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The problem of optimal control with separated conditions for the ends is investigated. It is assumed that for the manifold of left 
ends (and also for the manifold of right ends) a field of extremals including the given extremal exists. A criterion, which gives 
the necessary and sufficient conditions for optimality in terms of these two fields, is proved. The positive definiteness of the 
difference of the solutions of the corresponding Riccati matrix equations serves as the sufficient condition, and its non-negativity 
serves as the necessary condition. The formula relating the solution of Riccati's equation to the Hessian of Bellman's function 
plays a key role in the proof of the criterion. © 2004 Elsevier Ltd. All rights reserved. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

C o n s i d e r  t h e  p r o b l e m  o f  m i n i m i z i n g  t h e  f u n c t i o n a l  

t 2 

J(u('))  = I f ( t ,  x, u)dt 
t I 

(1.1) 

with the constraints 

Y; = tp( t ,x ,u) ,  O l ( t ] , x ( q ) )  = O, 02(t2, x(t2) ) = 0; u ( t ) ~  U (1.2) 

Here x are the phase variables, belonging to a continuous n-dimensional manifold M, the control 
u(t) ~ U is continuous and the functions f, % O1, O2 depend continuously on their arguments. 

Note that the results obtained in this paper hold for considerably less rigid assumptions, but for clarity 
and simplicity, we will derive the simplest version here. Without loss of generality we will assume that 
f(t, x, u) > 0. This can always be supplemented by adding an appropriate constant to the integrand. We 
will denote the subset of left ends (the second equality of (1.2)) by M1 C N x M and the subset of the 
right ends (the third equality of (1.2)) by M2 C ~ x M; the dimensions of M1 and M 2 a r e  arbitrary. 

2. P R E L I M I N A R Y  F A C T S  

We will recall some facts which touch on problems (1.1) and (1.2). Suppose ~ is an element of a co- 
tangent bundle T*M of the manifold M. We will conditionally denote the result of substituting the 
functions 2(0, ~t(t), a(t) under the sign of a certain function F(x, ~t, u) byF(t). Consider the Pontryagin 
function 

~ ( t ,  x, ~,  u) = - f ( t ,  x, u) + ~tp(t, x, u) 

We will denote its maximum with respect to u by H(t, x, ~t). We will assume that the problem is normal, 
and hence the coefficient o f f  can be taken to be equal to -1. Everywhere henceforth we will also assume 
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that the value of u, which gives a maximum of ~, is uniquely defined and the function H(t, x, ~)  is 
continuous. 

Suppose 2(t), a(t), t s [~, t2] gives a strong local minimum. Then, by virtue of Pontryagin's maximum 
principle, a continuous lifting ~(t) of the optimum trajectoryx(t) exists in the co-tangent bundle, which 
satisfies the following conditions. 

1. The function 3~(t, 2(t), ~(t), u) reaches its maximum with respect to u when u = ~(t) 

H(t, 2(t), ~(t))  = H(t) = max,( t ,  2(t), O(t), u) 
u E U  

2. The pair of functions 2(% ~t(.) is the solution of the Hamilton system 

(2.1) 

= Hv(t ,  x, gt), fg = -H~(t,  x, lg) (2.2) 

3. The conditions of transversality are satisfied: the pair (-/2/(~k), ~(ik)) is an annihilator of the 
tangential plane to the submanifold Mk at the point tk, 2(~k), i.e. 

- k(?,)0 + ~t(~k) { = 0 for all (0, {) E T.M,(~k, 2(~k) ) (2.3) 

Here k = 1 for the left end and k = 2 for the right end. 

Assumption 1. The function ~(.), which satisfies conditions (2.1)-(2.3), is uniquely defined. 
The pairs x(.) and u('), which satisfy conditions (2.1)-(2.3), are called extremals. 
We will define lifting ~1  of the manifold M1 in extended phase space of the variables t, x, ~: for each 

point (t, x) e M1 we consider all ~ which satisfy condition (2.3) at this point. It is easy to see that 
dimgJ~l = n. We will denote the lifting of the manifold M2 by gJ~. 

Assumption 2. We will assume that the velocity vector of the Hamilton system (2.2), supplemented 
by the equation i = 1: 

~k = (1, //~¢(tk),--[-/x(tk)) (2.4) 

does not touch the manifold g)~k, (k = 1, 2). 
Assumption 2 is preserved for a certain neighbourhood ~k C ~¢)~k of the point (tk, 2(fk), ~(tk))" 
We will denote the n-dimensional vector of the coordinates, which parametrize ~k, by •k. 
Consider the solutions of Hamilton system (2.2) with initial conditions at the points ~1 = (tl, X(tl), 

~(h)) e ~1. Propositions 1 and 2 guarantee that, as a result, an (n + 1)-dimensional continuous manifold 
921 is obtained, which, by virtue of the Poincar6-Cartan integral invariant theorem and by virtue of 
transversality conditions on the left end (2.3), is Lagrangian, i.e. 

~( -  n d t  + ~dx)  = 0 (2.5) 

Y 

for any closed curve 7 C 921. By decreasing the neighbourhood ~1, if necessary, we require that the 
Manifold 9~1 when t e (q, t2], where tl and t2 depend on the corresponding trajectory (x(t), g(t)) C 921, 
is projected diffeomorphically onto a certain region N1 of the space (t, x). If this is possible we say that 
a field of extremals ~1 corresponding to the manifold M1 is defined in N1, and that there are no focal 
points of the manifold M1 on this extremal. In this case the projections of the extremals which lie in 
~1, uniquely cover the region N1. In view of the one-to-one nature of the projection, the function ~l(t, 
x) is defined in N1 and then -Hdt  + ~dx becomes a differential form on N1, and equality (2.5) denotes 
that this form is exact. Consequently, a function SI(t, x) exists such that 

dS 1 = - Hdt + ~ d x  (2.6) 

Hence it follows that the Hamilton-Jacobi equation in the Bellman form is satisfied for $1, while the 
function St is Bellman's function in the problem of minimizing the functional J with initial manifold 
M1 and with the right end at the point (t, x). 

We carry out exactly the same construction, but only with motion in time backwards, for manifold 
M2, and we obtain another solution S2(t , x)  of the Hamilton-Jacobi equation, corresponding to the 
manifold of the ends M2. 
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Assumption 3. For the extremal x('), u(.) there are no focal points of the manifold M1 in the half- 
interval (tl, t2]. These are no focal points of the manifold M2 in the half-interval [Z1, Z2). 

If, say, the manifold M2 was reduced to a point, the lack of focal points of the manifold M1 together 
with the Pontryagin maximum principle would give a sufficient condition for a strong minimum, since 
the extremal x(-) would be imbedded in the field, and the condition for a maximum of Pontryagin's 
function would guarantee that Weiserstrass's function is non-negative. However, if both manifolds, M1 
and M2, are non-trivial, Assumption 3 is necessary, but far from being sufficient for optimality. 

This paper is devoted to finding an important formula for calculating the Hessian (the matrix of the 
second differential) of the functions Sk(t, x). This formula is not simply a new interpretation of existing 
constructions, but a convenient mathematical apparatus. In particular, it has enabled us to obtain the 
necessary and sufficient conditions for problem (1.1), (1.2) to be optimal, derived below, that are the 
simplest and most effective as a criterion for there to be no focal point for a problem with one clamped 
end. 

3. F U N D A M E N T A L  T H E O R E M S  

Consider the following system of equations in variations for Eqs (2.2) 

Cl = Hvx(t, x, Ig)q + Hvv(t  , x, Ig)p 

t i = -Hxx(t, x, Ig)q - Hxv(t , x, ¥ ) p  
(3.1) 

We have denoted by q and p the derivatives with respect to the initial data for the functions x and ~g 
respectively, which are solutions of system (2.2). Henceforth, it will be more convenient to regard q 
andp as being n x n matrices of derivatives with respect to the quantities ~1. The coefficients of system 
(3.1) are also n x n matrices. 

Riccati's matrix equation [1] for the transfer of Lagrange planes with respect to the solutions of system 
(3.1) will be the main instrument of the investigation. We will denote the matrix coordinates of the 
Lagrange planes by W = pq-1. One can easily obtain, by direct differentiation, the following Riccati 
matrix equation of W 

- W  = Hxx + HxvW + WHvx + WH~vW (3.2) 

Since the matrix of the coefficients of system (3.1) belong to a Lie algebra of a symplectic Lie group, 
the matrix W(t) will be symmetric if its initial value W(tl) is a symmetric matrix. The initial value W(tl) 
is found from the transversality condition (2.3), which gives the Lagrange plane and, consequently, is 
a symmetric matrix. 

If the matrix q is degenerate, the solution W(t) of Eq. (3.2) departs to infinity (a focal point), and if 
it is necessary to start or extend the solution of Eq. (3.2) one must perform a matrix fractional-linear 
transformation in order to transfer to another map in a Lagrange-Grassman manifold. 

Theorem 1. We will assume that Assumptions 1, 2 and 3 are satisfied on the extremal 2(% qt(.). Suppose 
the solutionp(t), q(t) of Eqs (3.1) desCribes the evolution of the derivatives with respect to the initial 
data on the manifold ~1 along the extremal 2(% ~(.). 

Then, the corresponding solution Wl(t) of Riccati's equation gives the Hessian of Bellman's function 
Sl(t, x) of the field 

~2S 1 
Wl(t ) = -~--y(t, 2(t)) (3.3) 

Ox- 

Proof. It follows from formula (2.6) that the vector % at any point (t, x), covered by the field of the 
extremal, specifies the gradient of Bellman's function 

OSl(t, x) 
~l(t, x) - bx (3.4) 

The matrixp is, by definition, the matrix of derivatives of I1/1 with respect to initial values 1, while q 
is 1 a matrix of the derivatives of x with respect to initial values %. Consequently, the matrix q- is the 
derivatives of (h with respect to x, i.e. 
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-1 01Ill (t, x)0(Y 1 ~2S1 (t, x) 
= - ( 3 . 5 )  

Pq O(Yl Ox OX 2 

Similarly we have for the field ~2 

-1 ~2S2(t,  x)  
= ( 3 . 6 )  Pq ~x 2 

The minus sign appears due to the fact that ~2(t, x) - OS2(t, x) ,  since, to identify S 2 with J, one must 
bx 

deal with the lower limit of integration. 
Consider the field of extremals ~1 for the left manifold M1 and the field of extremals ~}2 for the right 

manifold M2. Since both fields include the extremal 2(% we have 

q/ l ( t )  = ~/2(t) ,  t e It1, t21 (3.7) 

Consequently 

~S 1 (t,)c(t)) OS2(t, 5c(t)) 
Ox Ox 

(3.8) 

i.e. the tangent plane to the level surfaces of the functions $1 and S 2 at points of the trajectoryx(.) coincide 
and are oppositely orientated. 

It is shown in the theorems which follow below that the necessary condition for optimality is the non- 
negativity, while the sufficient condition is the positive definiteness, of the quadratic form with matrix 
(Wl - w2). 

Theorem 2. Suppose Assumptions 1, 2 and 3 for the trajectory2(.), which satisfy Pontryagin's maximum 
principle (2.1)-(2.3), are satisfied. 

Then the necessary condition for the trajectory 2(.) to deliver a weak minimum to functional (1.1), 
is the non-negativity of the quadratic form with matrix (WI('0 - W2(x)) for the t ~ (Z0, tl). 

Proof. For the trajectory 2(-), which gives a weak minimum, we will assume the opposite, i.e. that 
there is an instant "c and a vector { such that 

- < o (3.9) 

We will consider the trajectory Xl( '  ) of the field ~1, which ends at the point (% J?(x) + {). Such a 
trajectory exists, since, without loss of generality, by virtue of the uniformity, we can assume that the 
vector ~ is as small as desired. Exactly the same trajectoryx2(.) of the field ~2 exists, and begins at the 
point (% J('c) + ~). Note that for any point (t, x) e N1 71 N2 and for the composite extremal (x(.), u(.)), 
made up of the fields ~1 and ~2, passing through the point (t, x), we have the equality. 

Sl(t, x) + S2(t, x) = J(u( ' ) )  (3.10) 

Consider the Taylor expansions 

^ k - l  
, ( , ) +  = + o(r ,i (3.11) 

Combining formulae (3.11) for k = 1 and k = 2 and taking equality (3.8) into account, we obtain 

(S  1 + $2)('17 , x("c) + ~) - (S 1 + S2)(q; , x("~)) = ~ ( ( W  l - W2)("~)~ , ~) + o(l~[ 2) < 0 (3.12) 

By virtue of relations (3.9) and (3.10) we attempted to obtain a diminishing of the functional J. In view 
of the arbitrary smallness of ~ and the continuity of the field g3 i, the angles of inclination of both the 
left and right halves of the curve constructed at the point where they join differ as little as desired from 
the angle of inclination of the extremal 2(x). Consequently, we can smooth the extremalx(.) at the corner 
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point, without violating inequality (3.12) and without departing the CLneighbourhood of the trajectory 
2('). Consequently, a weak minimum is not reached on the trajectory 2(% which contradicts the 
assumption made above. 

Theorem 3. Suppose Assumptions 1, 2 and 3 for the trajectory2(-), satisfying Pontryagin's maximum 
principle (2.1)-(2.3), are satisfied. 

Then the sufficient condition for the trajectory 2(') to deliver a strong minimum to the functional 
(1.1) is that the quadratic form with matrix (WI('0 - W2(x)) to be positive definite for a certain 

Proof. Consider the arbitrary permissible trajectory x(-) C N1 A N2, corresponding to the control 
u(.) and lying in the e-neighbourhood (in the C topology) of the curve 2(-). Then Ix('c) -2('c) I < e, and 
consequentlyx('c) = 2('c) + {. Suppose the trajectoryx(.) intersects the manifold M1 at t = tl and Me 
at t = t2. Note that "c e (tl, t2) for sufficiently small e. In view of the definition of the function Sk(t, x) 
we have the inequalities 

'~ t 2 

I f ( t ,  x(t), u(t))dt>_ $1(~, x(x)), ; f ( t ,  x(t), u(t))dt>_ S2(Z, x(x)) 
t I 

Adding, we obtain 

J(u(.)) > Sl("C, x(X)) + S2( '~  , X('~)) 

Again using Taylor expansion (3.12), we obtain 

J<u(.>)- w2)( g, + 0(1 21)>0 

Remark 1. Problems in which the boundary values for the left and right ends of the trajectory are encountered 
in a single common formula, can be reduced to a problem with separated conditions for the ends, considered in 
this paper, by introducing auxiliary variables. 

Consider, for example, the problem of minimizing the functional 

T 

J (u ( . ) )  = I f ( t ,  x, u)dt  

o 

with the constraints 

.~ = ~ p ( t , x , u ) ,  ~ ( x ( 0 ) , x ( T ) )  = 0;  u(t)  ~ U 

We will introduce the new variables 

y( t )  = x( t ) ,  Z(t) = x ( T - t )  

Then the boundary conditions take the form 

q~(y(0),z(0)) = 0, ~(z(T),y(T)) = 0 

2. It follows from Theorem 2 and 3 that if the matrix (W1 - W2) is positive for one value of t, it will remain non- 
negative for all t e (tl, ~2). 

3. A check of the necessary and sufficient conditions, presented in Theorem 2 and 3, gives rise to no additional 
difficulties compared with a check of Assumption 3. No additional integration of Riccati's matrix equation (3.2) 
is required, since the solution of this equation is expressed in terms of the solutions of the Euler-Jacobi equations 
which have already been solved when checking Assumption 3. Only the question of whether the matrices obtained 
are positive definite remains. 

The results obtained also hold in the more general situation, in particular, when there are switching 
surfaces. To overcome the difficulties that arise in this case one can use the technique of piecewise- 
continuous Lagrange manifolds, developed previously in [2]. Moreover, since the solutions of the 
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equations in variations, when the switching surfaces intersect, undergo jumps, it is necessary to consider 
discontinuous solutions of Riccati's equations [3]. 
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